Probably not transitive

From Math Puzzle Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

I first heard a similar version of this puzzle on the The Math Factor.

Puzzle

Consider the following card game: the 2 through 10 of spades are placed in three piles of three cards each. Player 1 picks any pile, then player 2 picks one of the remaining piles. Each player picks one of their three cards at random - high card wins. Now in the piles pictured, player 1 has a winning strategy: pick pile A, as any card in that pile would be a winner. But if the cards were arranged differently, things might not be so simple.


Find an arrangement of the cards into three piles so that player 2 has a winning strategy. That is, player 2 can always pick a pile that has a greater than 50% chance of beating the pile picked by player 1. Or prove that this is impossible.